Каждая сторона треугольника разделена на три части в отношении 3:2:3. Найти отношение площади шестиугольника, вершинами которого служат точки деления, к площади треугольника.
«Каждая сторона треугольника разделена на три части в отношении 3:2:3. Найти отношение площади шестиугольника, вершинами которого служат точки деления, к площади треугольника.»
- Геометрия
Условие:
Каждая сторона треугольника разделена на три части в отношении 3:2:3. Найти отношение площади шестиугольника, вершинами которого служат точки деления, к площади треугольника.
Решение:
1) Обозначим:
AB=8c;BC=8a;CA=8b.
Тогда:
AA2=3с; A2 B1=2c; B1 B=3c;
BB2=3a; B2 C1=2a; C1 C=3a;
CC2=3b; C2 A1=2b; A1 A=3b.
2) ∆A1 AA2~∆CAB по двум сторонам и углу между ними: :A общий; а прилежащие стороны пропорциональны:
3) В подобных треугольниках отношение площадей равно квадрату коэффициента подобия:
Похожие задачи
Не нашел нужную задачу?
Воспользуйся поиском
AI помощники
Выбери предмет
S
А
Б
В
Г
И
К
М
П
- Правоохранительные органы
- Пожарная безопасность
- Парикмахерское искусство
- Природообустройство и водопользование
- Почвоведение
- Приборостроение и оптотехника
- Промышленный маркетинг и менеджмент
- Производственный маркетинг и менеджмент
- Процессы и аппараты
- Программирование
- Право и юриспруденция
- Психология
- Политология
- Педагогика
С
Т
- Трудовое право
- Теория государства и права (ТГП)
- Таможенное право
- Теория игр
- Теория вероятностей
- Теоретическая механика
- Теория управления
- Технология продовольственных продуктов и товаров
- Технологические машины и оборудование
- Теплоэнергетика и теплотехника
- Туризм
- Товароведение
- Таможенное дело
- Торговое дело
- Теория машин и механизмов
- Транспортные средства
Ф
Э