1. Главная
  2. Библиотека
  3. Геометрия
  4. Вычисли площадь полной поверхности правильной усечённой треугольной пирамиды, если стороны оснований равны 5 дм и 17 дм, а...

Вычисли площадь полной поверхности правильной усечённой треугольной пирамиды, если стороны оснований равны 5 дм и 17 дм, а апофема равна 8 дм.

«Вычисли площадь полной поверхности правильной усечённой треугольной пирамиды, если стороны оснований равны 5 дм и 17 дм, а апофема равна 8 дм.»
  • Геометрия

Условие:

Вычисли площадь полной поверхности правильной усечённой треугольной пирамиды, если стороны оснований равны 5 дм и 17 дм, а апофема равна 8 дм.

Площадь полной поверхности равна
+
−−−−−−−√дм2.

Дополнительные вопросы

Площадь боковой поверхности равна
дм2.

Площадь большего основания равна
−−−−−−−√дм2.

Решение:

Чтобы вычислить площадь полной поверхности правильной усечённой треугольной пирамиды, нам нужно найти площади боковой поверхности и оснований. 1. **Площадь большего основания**: Площадь треугольника можно вычислить по формуле: \[ S = \frac{a^2 \sqrt{3}}{4} \] где \( a \) — длина стороны треугольника. Для большего основания, где сторона равна 17 дм: \[ S_1 = \frac{17^2 \sqrt{3}}{4} = \frac{289 \sqrt{3}}{4} \text{ дм}^2 \] 2. **Площадь меньшего основания**: Для меньшего основания, где сторона равна 5 дм: \[ S_2 = \frac{5^2 \sqrt{3}}{4} = ...

Не нашел нужную задачу?

Воспользуйся поиском

Выбери предмет