Условие задачи
1. Рассчитать оптимальный шаг для построения таблицы значений функции, которая позволит с наименьшей погрешностью вычислить значенияпо приближенной формуле центральной разностной производной, если табличные значения функции вычислены с точностью 0.0001.
2. Найти погрешность, с которой можно найти с вычисленным в пункте a) оптимальным шагом.
3. Написать программу, которая
а) выводит таблицу значений функции с рассчитанным оптимальным шагом h на интервале [c-h, c+16h] (таблица должна содержать 2 столбца: значения аргумента и соответствующее ему округленное до 0.0001 значение функции);
б) По составленной таблице вычисляет приближенные значения в точкахпо формуле центральной разностной производной;
в) выводит таблицу точных и приближенных значений производной (таблица должна содержать 3 столбца: значения xi из пункта б) и соответствующие им приближенные и точные значения производной).
В качестве функции взять
Ответ
Рассчитаем оптимальный шаг дифференцирования для приближенной формулы центральной разностной производной функцииесли значения функции с точностью 0.0001.
Известно, что оптимальный шаг для приближенной формулы центральной разностной производной оценивается по следующему равенству: