Докажите, что для симметричных функций плотности распределения вероятностей медиана равна математическому ожиданию. Приведите пример функции плотности, у которой медиана больше математического ожидания.
- Теория вероятностей
Условие:
Предположим, что непрерывная случайная величина Х имеет функцию плотности распределения вероятностей, отличную от нуля только на отрезке [a,b] и строго положительную на открытом интервале (a,b). Медиана случайной величины Х – значение m∈(a,b) такое что P(X<m)=P(X>m)=1/2.
1) Докажите, что для симметричных функций плотности распределения вероятностей медиана равна математическому ожиданию.
2) Приведите пример функции плотности, у которой медиана больше математического ожидания.
3) Пусть Х – случайная величина, f – строго возрастающая функция и Y=f(X). Что вы можете сказать о медианах Х и Y?
Решение:
1) Симметричным является распределение, в котором частоты любых двух вариантов, равноотстоящих в обе стороны от центра распределения, равны между собой. Значит, среднее значение (математическое ожидание) равно моде, т.е.
![]()
Отсюда следует, что
Похожие задачи
Не нашел нужную задачу?
Воспользуйся поиском
AI помощники
Выбери предмет
- Правоохранительные органы
- Пожарная безопасность
- Парикмахерское искусство
- Природообустройство и водопользование
- Почвоведение
- Приборостроение и оптотехника
- Промышленный маркетинг и менеджмент
- Производственный маркетинг и менеджмент
- Процессы и аппараты
- Программирование
- Право и юриспруденция
- Психология
- Политология
- Педагогика
- Трудовое право
- Теория государства и права (ТГП)
- Таможенное право
- Теория игр
- Текстильная промышленность
- Теория вероятностей
- Теоретическая механика
- Теория управления
- Технология продовольственных продуктов и товаров
- Технологические машины и оборудование
- Теплоэнергетика и теплотехника
- Туризм
- Товароведение
- Таможенное дело
- Торговое дело
- Теория машин и механизмов
- Транспортные средства