Случайные величины X один и X два имеют биномиальное и пуассоновское распределения соответственно. Найти вероятности P(один ≤ Xi ≤ три), если математическое ожидание
«Случайные величины X один и X два имеют биномиальное и пуассоновское распределения соответственно. Найти вероятности P(один ≤ Xi ≤ три), если математическое ожидание»
- Теория вероятностей
Условие:
Случайные величины X1 и X2 имеют биномиальное и пуассоновское распределения соответственно. Найти вероятности P(1 ≤ Xi ≤ 3), если математическое ожидание M(Xi) = 4, а дисперсия D(X1) = 2.
Решение:
Так как распределения дискретные, то .
1) Если проводится n независимых испытаний, в каждом из которых событие А происходит с вероятностью p, то вероятность того, что событие А настанет ровно k раз, равняется :
Похожие задачи
Не нашел нужную задачу?
Воспользуйся поиском
AI помощники
Выбери предмет
S
А
Б
В
Г
И
К
М
П
- Правоохранительные органы
- Пожарная безопасность
- Парикмахерское искусство
- Природообустройство и водопользование
- Почвоведение
- Приборостроение и оптотехника
- Промышленный маркетинг и менеджмент
- Производственный маркетинг и менеджмент
- Процессы и аппараты
- Программирование
- Право и юриспруденция
- Психология
- Политология
- Педагогика
С
Т
- Трудовое право
- Теория государства и права (ТГП)
- Таможенное право
- Теория игр
- Теория вероятностей
- Теоретическая механика
- Теория управления
- Технология продовольственных продуктов и товаров
- Технологические машины и оборудование
- Теплоэнергетика и теплотехника
- Туризм
- Товароведение
- Таможенное дело
- Торговое дело
- Теория машин и механизмов
- Транспортные средства
Ф
Э