Дана система линейных уравнений. Доказать ее совместность и решить тремя способами: по формулам Крамера; методом Гаусса; средствами матричного исчисления.
 «Дана система линейных уравнений. Доказать ее совместность и решить тремя способами: по формулам Крамера; методом Гаусса; средствами матричного исчисления.» 
- Высшая математика
 
Условие:
Дана система линейных уравнений. Доказать ее совместность и решить тремя способами:
1) по формулам Крамера;
2) методом Гаусса;
3) средствами матричного исчисления.

Решение:
Исследуем систему на совместность. Воспользуемся теоремой Кронекера-Капелли, для этого найдем ранг расширенной матрицы системы и ранг матрицы системы.
Найдем ранг матрицы методом элементарных преобразований. Ранг матрицы равен числу ненулевых строк в матрице после приведения её к ступенчатой форме при помощи элементарных преобразований над строками матрицы.

Ранг расширенной матрицы равен рангу матри...
Похожие задачи
Не нашел нужную задачу?
Воспользуйся поиском
AI помощники
Выбери предмет
S
А
Б
В
Г
И
К
М
П
- Правоохранительные органы
 - Пожарная безопасность
 - Парикмахерское искусство
 - Природообустройство и водопользование
 - Почвоведение
 - Приборостроение и оптотехника
 - Промышленный маркетинг и менеджмент
 - Производственный маркетинг и менеджмент
 - Процессы и аппараты
 - Программирование
 - Право и юриспруденция
 - Психология
 - Политология
 - Педагогика
 
С
Т
- Трудовое право
 - Теория государства и права (ТГП)
 - Таможенное право
 - Теория игр
 - Текстильная промышленность
 - Теория вероятностей
 - Теоретическая механика
 - Теория управления
 - Технология продовольственных продуктов и товаров
 - Технологические машины и оборудование
 - Теплоэнергетика и теплотехника
 - Туризм
 - Товароведение
 - Таможенное дело
 - Торговое дело
 - Теория машин и механизмов
 - Транспортные средства
 
Ф
Э