Даны векторы a₁=(-2;4), a₂=(1;2), b₁=(2;-4), b₂=(3;-2). Доказать, что a₁, a₂ — базис линейного пространства R², а b₁, b₂ — базис линейного пространства R². Найти матрицу перехода от базиса {a₁, a₂} к базису {b₁, b₂}.
- Высшая математика
Условие:
Даны векторы a1= (-2;4) a2 =(1;2) b1=(2;-4) b5 = (3;-2).
Доказать, что a1, а2 и b1,b2- базисы линейного пространства R2. Найти матрицу перехода от базиса a1, а2 к базису b1,b2.
Решение:
Чтобы доказать, что векторы \( a_1 = (-2; 4) \) и \( a_2 = (1; 2) \) образуют базис линейного пространства \( \mathbb{R}^2 \), а также векторы \( b_1 = (2; -4) \) и \( b_2 = (3; -2) \) образуют базис, необходимо показать, что оба набора векторов линейно независимы. ### Шаг 1: Проверка линейной независимости векторов \( a_1 \) и \( a_2 \) Векторы \( a_1 \) и \( a_2 \) линейно независимы, если не существует таких скаляров \( k_1 \) и \( k_2 \), не равных нулю, что: \[ k_1 a_1 + k_2 a_2 = 0 \] Запишем это уравнение: \[ k_1 (-2; 4) + k_2 (1; 2) = (0; 0) \] Это приводит к системе уравнений: ...
Похожие задачи
Не нашел нужную задачу?
Воспользуйся поиском
AI помощники
Выбери предмет
- Правоохранительные органы
- Пожарная безопасность
- Парикмахерское искусство
- Природообустройство и водопользование
- Почвоведение
- Приборостроение и оптотехника
- Промышленный маркетинг и менеджмент
- Производственный маркетинг и менеджмент
- Процессы и аппараты
- Программирование
- Право и юриспруденция
- Психология
- Политология
- Педагогика
- Трудовое право
- Теория государства и права (ТГП)
- Таможенное право
- Теория игр
- Теория вероятностей
- Теоретическая механика
- Теория управления
- Технология продовольственных продуктов и товаров
- Технологические машины и оборудование
- Теплоэнергетика и теплотехника
- Туризм
- Товароведение
- Таможенное дело
- Торговое дело
- Теория машин и механизмов
- Транспортные средства