Доказать существование и единственность действительного корня нелинейного уравнения. Локализовать корень уравнения таблично. С точностью до δ=0,01 приближенно вычислить корень методом половинного
«Доказать существование и единственность действительного корня нелинейного уравнения. Локализовать корень уравнения таблично. С точностью до δ=0,01 приближенно вычислить корень методом половинного»
- Высшая математика
Условие:
Доказать существование и единственность действительного корня нелинейного уравнения. Локализовать корень уравнения таблично. С точностью до δ=0,01 приближенно вычислить корень методом половинного деления и δ=0,001 методом хорд (все вычисления проводить с четырьмя знаками после запятой)
x3 - 3x2 + 15x - 4=0
Решение:
Определим интервалы возрастания и убывания функции f(x) = x3 - 3x2 + 15x - 4 :
Производная функции
Уравнение не имеет корней, f' (x)0 на всей числовой оси, значит функция f(x) = x3 - 3x2 + 15x - 4 возрастает на всей числовой оси, следовательно, корень уравнения существует и он один.
Локализуем корень таблично:
Похожие задачи
Не нашел нужную задачу?
Воспользуйся поиском
AI помощники
Выбери предмет
S
А
Б
В
Г
И
К
М
П
- Правоохранительные органы
- Пожарная безопасность
- Парикмахерское искусство
- Природообустройство и водопользование
- Почвоведение
- Приборостроение и оптотехника
- Промышленный маркетинг и менеджмент
- Производственный маркетинг и менеджмент
- Процессы и аппараты
- Программирование
- Право и юриспруденция
- Психология
- Политология
- Педагогика
С
Т
- Трудовое право
- Теория государства и права (ТГП)
- Таможенное право
- Теория игр
- Теория вероятностей
- Теоретическая механика
- Теория управления
- Технология продовольственных продуктов и товаров
- Технологические машины и оборудование
- Теплоэнергетика и теплотехника
- Туризм
- Товароведение
- Таможенное дело
- Торговое дело
- Теория машин и механизмов
- Транспортные средства
Ф
Э