Два баскетболиста по очереди забрасывают мяч в корзину с вероятностью попадания при каждом броске для первого 0,8, для второго - 0,7.
«Два баскетболиста по очереди забрасывают мяч в корзину с вероятностью попадания при каждом броске для первого 0,8, для второго - 0,7.»
- Высшая математика
Условие:
Два баскетболиста по очереди забрасывают мяч в корзину с вероятностью попадания при каждом броске для первого 0,8, для второго - 0,7. Всего производится пять бросков. Составить законы распределения числа попаданий для каждого игрока, если начинает бросать первый баскетболист, найти математическое ожидание и дисперсию для каждого из законов распределения.
Решение:
Первый баскетболист делает 3 броска.
Случайная величина X - число попаданий первым баскетболистом может принимать значения: 0,1,2,3
Второй баскетболист делает 2 броска.
Случайная величина Y - число попаданий вторым баскетболистом может принимать значения: 0,1,2
Случайные величины X,Y распределены по би...
Похожие задачи
Не нашел нужную задачу?
Воспользуйся поиском
AI помощники
Выбери предмет
S
А
Б
В
Г
И
К
М
П
- Правоохранительные органы
- Пожарная безопасность
- Парикмахерское искусство
- Природообустройство и водопользование
- Почвоведение
- Приборостроение и оптотехника
- Промышленный маркетинг и менеджмент
- Производственный маркетинг и менеджмент
- Процессы и аппараты
- Программирование
- Право и юриспруденция
- Психология
- Политология
- Педагогика
С
Т
- Трудовое право
- Теория государства и права (ТГП)
- Таможенное право
- Теория игр
- Теория вероятностей
- Теоретическая механика
- Теория управления
- Технология продовольственных продуктов и товаров
- Технологические машины и оборудование
- Теплоэнергетика и теплотехника
- Туризм
- Товароведение
- Таможенное дело
- Торговое дело
- Теория машин и механизмов
- Транспортные средства
Ф
Э