Известно, то время непрерывной работы электрической лампы есть случайная величина ξ(час), имеющая показательный закон распределения. Найти математическое ожидание и среднее квадратическое отклонение этой случайной
- Высшая математика
Условие:
Известно, то время непрерывной работы электрической лампы есть случайная величина ξ (час), имеющая показательный закон распределения. Найти математическое ожидание и среднее квадратическое отклонение этой случайной величины, если известно, что вероятность непрерывной работы лампы не менее 800 часов равна 0,2. Построить схематично графики функции распределения и функции плотности распределения этой случайной величины. Вычислить вероятность того, что выбранная случайным образом лампа непрерывно проработает:
а) не более 600 часов;
б) не менее 700 часов;
в) от 30 до 40 суток.
Решение:
Как известно, функция плотности распределения f(x) и функция распределения F(x) случайной величины , распределенной по показательному закону с параметром , имеют вид:
По условию задачи вероятность непрерывной работы лампы не менее 800 часов равна 0,2. Тогда получаем:
Похожие задачи
Не нашел нужную задачу?
Воспользуйся поиском
AI помощники
Выбери предмет
- Правоохранительные органы
- Пожарная безопасность
- Парикмахерское искусство
- Природообустройство и водопользование
- Почвоведение
- Приборостроение и оптотехника
- Промышленный маркетинг и менеджмент
- Производственный маркетинг и менеджмент
- Процессы и аппараты
- Программирование
- Право и юриспруденция
- Психология
- Политология
- Педагогика
- Трудовое право
- Теория государства и права (ТГП)
- Таможенное право
- Теория игр
- Теория вероятностей
- Теоретическая механика
- Теория управления
- Технология продовольственных продуктов и товаров
- Технологические машины и оборудование
- Теплоэнергетика и теплотехника
- Туризм
- Товароведение
- Таможенное дело
- Торговое дело
- Теория машин и механизмов
- Транспортные средства