Локализовать корень нелинейного уравнения f(x)=0 и найти его методом бисекции с точностью ε_1=0.01. Выбрав полученное решение в качестве начального приближения, найти решение уравнения методом
«Локализовать корень нелинейного уравнения f(x)=0 и найти его методом бисекции с точностью ε_1=0.01. Выбрав полученное решение в качестве начального приближения, найти решение уравнения методом»
- Высшая математика
Условие:
Локализовать корень нелинейного уравнения f(x)=0 и найти его методом бисекции с точностью ε1=0.01. Выбрав полученное решение в качестве начального приближения, найти решение уравнения методом простой итерации с точностью ε2=0.0001. Для метода простой итерации обосновать сходимость и оценить достаточное для достижения заданной точности ε2 число итераций.
f(x)=lnx+x-3
Решение:
Отделим корни уравнения графически:
Вычислим первую и вторую производную.
На отрезке [2; 3] f' (x)0 (функция монотонно возрастает), f'' (x)0 (график функции выпуклый), на концах отрезка функция имеет ра...
Похожие задачи
Не нашел нужную задачу?
Воспользуйся поиском
AI помощники
Выбери предмет
S
А
Б
В
Г
И
К
М
П
- Правоохранительные органы
- Пожарная безопасность
- Парикмахерское искусство
- Природообустройство и водопользование
- Почвоведение
- Приборостроение и оптотехника
- Промышленный маркетинг и менеджмент
- Производственный маркетинг и менеджмент
- Процессы и аппараты
- Программирование
- Право и юриспруденция
- Психология
- Политология
- Педагогика
С
Т
- Трудовое право
- Теория государства и права (ТГП)
- Таможенное право
- Теория игр
- Теория вероятностей
- Теоретическая механика
- Теория управления
- Технология продовольственных продуктов и товаров
- Технологические машины и оборудование
- Теплоэнергетика и теплотехника
- Туризм
- Товароведение
- Таможенное дело
- Торговое дело
- Теория машин и механизмов
- Транспортные средства
Ф
Э