Найдите площадь боковой поверхности прямой призмы, в основании которой лежит ромб с диагоналями, равными 16 и 30, и боковым ребром, равным 40.
«Найдите площадь боковой поверхности прямой призмы, в основании которой лежит ромб с диагоналями, равными 16 и 30, и боковым ребром, равным 40.»
- Высшая математика
Условие:
1. Найдите площадь боковой поверхности прямой призмы, в основании которой лежит ромб с диагоналями, равными 16 и 30, и боковым ребром, равным 40.
Решение:
Чтобы найти площадь боковой поверхности прямой призмы, нам нужно знать периметр основания и высоту призмы. 1. **Находим площадь основания (ромба)**: Площадь ромба можно найти по формуле: S = (d1 * d2) / 2, где d1 и d2 - диагонали ромба. В нашем случае: d1 = 16, d2 = 30. Подставим значения в формулу: S = (16 * 30) / 2 = 480...
Похожие задачи
Не нашел нужную задачу?
Воспользуйся поиском
AI помощники
Выбери предмет
S
А
Б
В
Г
И
К
М
П
- Правоохранительные органы
- Пожарная безопасность
- Парикмахерское искусство
- Природообустройство и водопользование
- Почвоведение
- Приборостроение и оптотехника
- Промышленный маркетинг и менеджмент
- Производственный маркетинг и менеджмент
- Процессы и аппараты
- Программирование
- Право и юриспруденция
- Психология
- Политология
- Педагогика
С
Т
- Трудовое право
- Теория государства и права (ТГП)
- Таможенное право
- Теория игр
- Текстильная промышленность
- Теория вероятностей
- Теоретическая механика
- Теория управления
- Технология продовольственных продуктов и товаров
- Технологические машины и оборудование
- Теплоэнергетика и теплотехника
- Туризм
- Товароведение
- Таможенное дело
- Торговое дело
- Теория машин и механизмов
- Транспортные средства
Ф
Э