Боковое ребро правильной четырехугольной пирамиды образует угол в 60° с плоскостью основания. Найдите площадь поверхности пирамиды, если боковое ребро равно 12 см.
- Геометрия
Условие:
вы решили уже?
Боковое ребро правильной четырехугольной пирамиды образует угол в 60° с плоскостью основания. Найдите площадь поверхности пирамиды, если боковое ребро равно 12 см
Решение:
Чтобы найти площадь поверхности правильной четырехугольной пирамиды, нам нужно рассмотреть несколько шагов. 1. **Определим высоту пирамиды**. Боковое ребро образует угол в 60° с плоскостью основания. Мы можем использовать тригонометрию для нахождения высоты. Обозначим: - \( h \) — высота пирамиды, - \( l \) — длина бокового ребра (в данном случае \( l = 12 \) см), - \( \alpha \) — угол между боковым ребром и плоскостью основания (в данном случае \( \alpha = 60° \)). Используя соотношение: \[ h = l \cdot \sin(\alpha) \] подставляем значения: \[ h = 12 \cdot ...
Похожие задачи
Не нашел нужную задачу?
Воспользуйся поиском
AI помощники
Выбери предмет
- Правоохранительные органы
- Пожарная безопасность
- Парикмахерское искусство
- Природообустройство и водопользование
- Почвоведение
- Приборостроение и оптотехника
- Промышленный маркетинг и менеджмент
- Производственный маркетинг и менеджмент
- Процессы и аппараты
- Программирование
- Право и юриспруденция
- Психология
- Политология
- Педагогика
- Трудовое право
- Теория государства и права (ТГП)
- Таможенное право
- Теория игр
- Теория вероятностей
- Теоретическая механика
- Теория управления
- Технология продовольственных продуктов и товаров
- Технологические машины и оборудование
- Теплоэнергетика и теплотехника
- Туризм
- Товароведение
- Таможенное дело
- Торговое дело
- Теория машин и механизмов
- Транспортные средства