Найти величину коэффициента a , написать аналитическое выражение и простроить график функции распределения, найти математическое ожидание, дисперсию и среднее квадратическое отклонение данной случайной величины.
 «Найти величину коэффициента a , написать аналитическое выражение и простроить график функции распределения, найти математическое ожидание, дисперсию и среднее квадратическое отклонение данной случайной величины.» 
- Теория вероятностей
 
Условие:
Плотность распределения вероятностей непрерывной случайной величины задана выражением:

Найти величину коэффициента a, написать аналитическое выражение и простроить график функции распределения, найти математическое ожидание, дисперсию и среднее квадратическое отклонение данной случайной величины. Найти вероятности попадания данной случайной величины в интервалы (4, 6) и (6, 10).
Решение:
1) Здесь имеем дело с непрерывной с. в., имеющей ненулевую плотность вероятности только на интервале (0; 8), поэтому бесконечные пределы интегрирования в соответствующих формулах заменяем на конечные: от 0 до 8. Для нахождения постоянной a воспользуемся свойством плотности вероятности:

Таким образом,
Похожие задачи
Не нашел нужную задачу?
Воспользуйся поиском
AI помощники
Выбери предмет
S
А
Б
В
Г
И
К
М
П
- Правоохранительные органы
 - Пожарная безопасность
 - Парикмахерское искусство
 - Природообустройство и водопользование
 - Почвоведение
 - Приборостроение и оптотехника
 - Промышленный маркетинг и менеджмент
 - Производственный маркетинг и менеджмент
 - Процессы и аппараты
 - Программирование
 - Право и юриспруденция
 - Психология
 - Политология
 - Педагогика
 
С
Т
- Трудовое право
 - Теория государства и права (ТГП)
 - Таможенное право
 - Теория игр
 - Текстильная промышленность
 - Теория вероятностей
 - Теоретическая механика
 - Теория управления
 - Технология продовольственных продуктов и товаров
 - Технологические машины и оборудование
 - Теплоэнергетика и теплотехника
 - Туризм
 - Товароведение
 - Таможенное дело
 - Торговое дело
 - Теория машин и механизмов
 - Транспортные средства
 
Ф
Э