Оценить вероятность того, что среди 1000 партий, прошедших контроль, будет 5 партий, в каждой из которых окажется 4 изделия со знаком качества.
- Теория вероятностей
 
Условие:
Завод выпускает в среднем 20% изделий со знаком качества. В ОТК для проверки изделия поступают партиями по 5 штук.
1) Построить ряд и функцию распределения числа партий, содержащих 2 или 3 изделия со знаком качества, если проверено 4 партии изделий; вычислить математическое ожидание и дисперсию рассматриваемой случайной величины.
2) Оценить вероятность того, что среди 1000 партий, прошедших контроль, будет 5 партий, в каждой из которых окажется 4 изделия со знаком качества.
Решение:
1) Воспользуемся формулой Бернулли. Если производится 𝑛 независимых испытаний, при каждом из которых вероятность осуществления события 𝐴 постоянна и равна 𝑝, а вероятность противоположного события равна q=1-p, то вероятность того, что при этом событие 𝐴 осуществляется ровно k раз, вычисляется по формуле , где число сочетаний из 𝑛 элементов по k. Для данного случая вероятность события 𝐴 в партии из 5 изделий окажется 2 или 3 изделия со знаком качества, равна:
Похожие задачи
Не нашел нужную задачу?
Воспользуйся поиском
AI помощники
Выбери предмет
- Правоохранительные органы
 - Пожарная безопасность
 - Парикмахерское искусство
 - Природообустройство и водопользование
 - Почвоведение
 - Приборостроение и оптотехника
 - Промышленный маркетинг и менеджмент
 - Производственный маркетинг и менеджмент
 - Процессы и аппараты
 - Программирование
 - Право и юриспруденция
 - Психология
 - Политология
 - Педагогика
 
- Трудовое право
 - Теория государства и права (ТГП)
 - Таможенное право
 - Теория игр
 - Текстильная промышленность
 - Теория вероятностей
 - Теоретическая механика
 - Теория управления
 - Технология продовольственных продуктов и товаров
 - Технологические машины и оборудование
 - Теплоэнергетика и теплотехника
 - Туризм
 - Товароведение
 - Таможенное дело
 - Торговое дело
 - Теория машин и механизмов
 - Транспортные средства