1. Главная
  2. Библиотека
  3. Теория вероятностей
  4. Построить биномиальный закон распределения с параметрами n, p (n=4, p=0,6). Вычислить для него математическое ожидание, ди...
  • 👋 Решение задач

  • 📚 Теория вероятностей

решение задачи на тему:

Построить биномиальный закон распределения с параметрами n, p (n=4, p=0,6). Вычислить для него математическое ожидание, дисперсию и среднее квадратическое отклонение.

Дата добавления: 02.09.2024

Условие задачи

Построить биномиальный закон распределения с параметрами n, p (n=4, p=0,6). Вычислить для него математическое ожидание, дисперсию и среднее квадратическое отклонение.

Ответ

Случайная величина Х может принимать одно из 5-ти значений: х = 0,1,2,3,4. Найдем вероятность каждого из этих значений.

Используем формулу Бернулли/

Если проводится n независимых испытаний, в каждом из которых событие А происходит с вероятностью р, то вероятность того, что событие А наступит ровно k раз, равняется

Тут .

Потяни

Сводка по ответу

  • Загружено студентом
  • Проверено экспертом
  • Использовано для обучения AI
  • Доступно по подписке Кампус+

Купи подписку Кампус+ и изучай ответы

Кампус Библиотека

  • Материалы со всех ВУЗов страны

  • 1 000 000+ полезных материалов

  • Это примеры на которых можно разобраться

  • Учись на отлично с библиотекой