1. Главная
  2. Библиотека
  3. Высшая математика
  4. Доказать, что векторы образуют базис в . Найти координаты вектора в этом базисе и вектора в исходном, если в исходном бази...
  • 👋 Решение задач

  • 📚 Высшая математика

решение задачи на тему:

Доказать, что векторы образуют базис в . Найти координаты вектора в этом базисе и вектора в исходном, если в исходном базисе , в новом базисе

Дата добавления: 15.10.2024

Условие задачи

Доказать, что векторы   образуют базис в  . Найти координаты вектора  b в этом базисе и вектора c  в исходном, если в исходном базисе  , в новом базисе  

Ответ

Три вектора образуют базис в , если определитель, составленный из координат этих векторов не равен 0.

Значит векторы образуют базис в . Выразим вектор через векторы

Потяни

Сводка по ответу

  • Загружено студентом
  • Проверено экспертом
  • Использовано для обучения AI
  • Доступно по подписке Кампус+

Купи подписку Кампус+ и изучай ответы

Кампус Библиотека

  • Материалы со всех ВУЗов страны

  • 1 000 000+ полезных материалов

  • Это примеры на которых можно разобраться

  • Учись на отлично с библиотекой