1. Главная
  2. Библиотека
  3. Высшая математика
  4. Найти сопряжённые операторы A* для следующих операторов: г) A: W1²[0, 1] → L²[0, 1], Ax = x'

Найти сопряжённые операторы A* для следующих операторов: г) A: W1²[0, 1] → L²[0, 1], Ax = x'

«Найти сопряжённые операторы A* для следующих операторов: г) A: W1²[0, 1] → L²[0, 1], Ax = x'»
  • Высшая математика

Условие:

Найти сопряжённые операторы A∗ для следующих операто-
ров
г)* A: W1
2 [0, 1] → L2[0, 1], Ax = x'

Решение:

Чтобы найти сопряжённый оператор \( A^* \) для оператора \( A: W_1^2[0, 1] \to L^2[0, 1] \), где \( Ax = x \), мы будем использовать определение сопряжённого оператора. 1. **Определение операторов**: - Оператор \( A \) действует на функции \( x \in W_1^2[0, 1] \) (пространство функций с квадратными интегрируемыми производными первого порядка) и возвращает производную \( x \), которая принадлежит пространству \( L^2[0, 1] \). 2. **Сопряжённый оператор**: - Сопряжённый оператор \( A^*: L^2[0, 1] \to W_1^2[0, 1] \) определяется через следующее условие: \[ \langle Ax, y \rangle_{L^2}...

Не нашел нужную задачу?

Воспользуйся поиском

Выбери предмет