Вероятность попадания в цель при отдельном выстреле равна ноль целых шесть десятых. Какова вероятность того, что число попаданий при шестиста выстрелах будет заключено в пределах от трехсот тридцати до трехста семидесяти пяти?
«Вероятность попадания в цель при отдельном выстреле равна ноль целых шесть десятых. Какова вероятность того, что число попаданий при шестиста выстрелах будет заключено в пределах от трехсот тридцати до трехста семидесяти пяти?»
- Высшая математика
Условие:
Вероятность попадания в цель при отдельном выстреле равна 0,6.
Какова вероятность того, что число попаданий при 600 выстрелах будет заключено в пределах от 330 до 375?
Решение:
Формулы Бернулли, Пуассона, асимптотическая формула (2), выражающая суть локальной теоремы Лапласа, позволяют найти вероятность появления события А ровно m раз при п независимых испытаниях. На практике часто требуется определить вероятность того, что событие А наступит не менее т1 раз и не более т2 раз, то есть число т определено неравенствамиm m1 m m2. В таких случаях применяют интегральную теорему Лапласа.
Похожие задачи
Не нашел нужную задачу?
Воспользуйся поиском
AI помощники
Выбери предмет
S
А
Б
В
Г
И
К
М
П
- Правоохранительные органы
- Пожарная безопасность
- Парикмахерское искусство
- Природообустройство и водопользование
- Почвоведение
- Приборостроение и оптотехника
- Промышленный маркетинг и менеджмент
- Производственный маркетинг и менеджмент
- Процессы и аппараты
- Программирование
- Право и юриспруденция
- Психология
- Политология
- Педагогика
С
Т
- Трудовое право
- Теория государства и права (ТГП)
- Таможенное право
- Теория игр
- Теория вероятностей
- Теоретическая механика
- Теория управления
- Технология продовольственных продуктов и товаров
- Технологические машины и оборудование
- Теплоэнергетика и теплотехника
- Туризм
- Товароведение
- Таможенное дело
- Торговое дело
- Теория машин и механизмов
- Транспортные средства
Ф
Э