Условие задачи
Запишите уравнение плоскости, проходящей через точку M0(1, 4, 3) перпендикулярно плоскостям 2x − 3y + 4z − 1 = 0 и x + 4y − z + 5 = 0.
Ответ
Так как искомая плоскость перпендикулярна данным плоскостям, то она параллельна их нормальным векторам l1 = N1 = (2,3, 4) и l2 = N2 = (1, 4,1).
Поэтому уравнение плоскости можно записать в виде: