Условие задачи
Построить и проинтерпретировать модель взаимосвязи между указанными факторами, проверить на значимость, осуществить точечный и интервальный прогноз, сделать выводы.
1. Исходные данные нанести на координатную плоскость. Сделать предварительное заключение о наличии взаимосвязи между факторами X и Y, о ее характере (положительная или отрицательная) и форме (линейная или нелинейная).
2. Рассчитать значение парного коэффициента корреляции xy r . Используя t-критерий Стьюдента проверить значимость полученного коэффициента корреляции и сделать вывод о тесноте связи между факторами X и Y.
3. Полагая, что взаимосвязь между факторами X и Y может быть описана линейной функцией, записать соответствующее уравнение этой зависимости. Вычислить оценки неизвестных параметров уравнения парной регрессии по методу наименьших квадратов на основе решения системы нормальных уравнений. Проинтерпретировать полученные результаты в терминах решаемой задачи.
4. Проверить значимость всех параметров модели по t-критерию Стьюдента. Для значимых коэффициентов построить доверительные интервалы. Сформулировать выводы.
5. Проверить значимость модели (уравнения регрессии) в целом с помощью F-критерия Фишера. Сформулировать вывод.
6. Построить таблицу дисперсионного анализа.
7. Выбрать прогнозную точку x P в стороне от основного массива данных. Используя уравнение регрессии выполнить точечный прогноз величины Y в точке x P .
8. Рассчитать доверительные интервалы для уравнения регрессии и для результативного признака y P при доверительной вероятности a = 0.95.
9. Изобразить в одной системе координат исходные данные, линию регрессии, точечный прогноз, 95% доверительный интервал.
10. Сделать общие выводы по проделанной работе.
Ответ
1. Исходные данные нанести на координатную плоскость. Сделать предварительное заключение о наличии взаимосвязи между факторами X и Y, о ее характере (положительная или отрицательная) и форме (линейная или нелинейная):
Рис. 1 Поле корреляции
На основании поля корреляции выдвинем гипотезу о том, что связь между всеми возможными значениями х и у, то есть для генеральной совокупности может быть линейна:...