1. Главная
  2. Библиотека
  3. Теория вероятностей
  4. Три стрелка независимо друг от друга стреляют по мишени. Вероятность попадания у первого стрелка равна 0.9. у второго - 0,7...
  • 👋 Решение задач

  • 📚 Теория вероятностей

решение задачи на тему:

Три стрелка независимо друг от друга стреляют по мишени. Вероятность попадания у первого стрелка равна 0.9. у второго - 0,7, у третьего - 0,8. Найти вероятность того, что:

Дата добавления: 14.03.2025

Условие задачи

Три стрелка независимо друг от друга стреляют по мишени. Вероятность попадания у первого стрелка равна 0.9. у второго - 0,7, у третьего - 0,8.

Найти вероятность того, что: а) мишень не будет поражена; б) в мишени будет хотя бы одна пробоина; в) в мишени будет только одна пробоина.

Ответ

Пусть А первый стрелок попал, , В второй стрелок попал, , С третий стрелок попал

Потяни

Активируй безлимит с подпиской Кампус

Решай задачи без ограничений

Кампус Библиотека

  • Материалы со всех ВУЗов страны

  • 2 000 000+ полезных материалов

  • Это примеры на которых можно разобраться

  • Учись на отлично с библиотекой