Окружность, построенная на биссектрисе BL равнобедренного треугольника ABC как на диаметре, пересекает основание BC в точке P. Боковая сторона треугольника вдвое больше его основания.
«Окружность, построенная на биссектрисе BL равнобедренного треугольника ABC как на диаметре, пересекает основание BC в точке P. Боковая сторона треугольника вдвое больше его основания.»
- Высшая математика
Условие:
Окружность, построенная на биссектрисе BL равнобедренного треугольника ABC как на диаметре, пересекает основание BC в точке P. Боковая сторона треугольника вдвое больше его основания.
а) Докажите, что BP=5CP;
б) Пусть данная окружность пересекает сторону AB в точке M, а Найдите BL;
Решение:
а) Докажите, что BP=5CP;
BC=x; AB=AC=2x
LPB=LMB=90, т.к. BL-диаметр,LPB=LMB внутренние вписа...
Похожие задачи
Не нашел нужную задачу?
Воспользуйся поиском
AI помощники
Выбери предмет
S
А
Б
В
Г
И
К
М
П
- Правоохранительные органы
- Пожарная безопасность
- Парикмахерское искусство
- Природообустройство и водопользование
- Почвоведение
- Приборостроение и оптотехника
- Промышленный маркетинг и менеджмент
- Производственный маркетинг и менеджмент
- Процессы и аппараты
- Программирование
- Право и юриспруденция
- Психология
- Политология
- Педагогика
С
Т
- Трудовое право
- Теория государства и права (ТГП)
- Таможенное право
- Теория игр
- Теория вероятностей
- Теоретическая механика
- Теория управления
- Технология продовольственных продуктов и товаров
- Технологические машины и оборудование
- Теплоэнергетика и теплотехника
- Туризм
- Товароведение
- Таможенное дело
- Торговое дело
- Теория машин и механизмов
- Транспортные средства
Ф
Э