1. Главная
  2. Библиотека
  3. Геометрия
  4. Сторона основания правильной треугольной пирамиды равна...
Решение задачи

Сторона основания правильной треугольной пирамиды равна 30 м, боковое ребро с плоскостью основания образует угол 30°. Вычислите высоту пирамиды.

  • Геометрия

Условие:

Сторона основания правильной треугольной пирамиды равна 30 м, боковое ребро с плоскостью основания образует угол 30°
Вычисли высоту пирамиды.

Решение:

Для нахождения высоты правильной треугольной пирамиды, нам нужно использовать данные о стороне основания и угле между боковым ребром и плоскостью основания. 1. Сначала определим высоту треугольника, который является основанием пирамиды. Основание пирамиды - правильный треугольник со стороной 30 м. Высота правильного треугольника вычисляется по формуле: h_основания = (√3 / 2) * a, где a - сторона треугольника. Подставим значение: h_основания = (√3 / 2) * 30 = 15√3 м. 2. Теперь найдем длину бокового ребра. У нас есть уго...

Не нашел нужную задачу?

Воспользуйся поиском

Выбери предмет