1. Главная
  2. Библиотека
  3. Геометрия
  4. В параллелограмме ABCD диагональ AC в два раза больше стороны AB и ∠ACD = 112°. Найди острый угол между диагоналями паралл...

В параллелограмме ABCD диагональ AC в два раза больше стороны AB и ∠ACD = 112°. Найди острый угол между диагоналями параллелограмма.

«В параллелограмме ABCD диагональ AC в два раза больше стороны AB и ∠ACD = 112°. Найди острый угол между диагоналями параллелограмма.»
  • Геометрия

Условие:

В параллелограмме 
A
B
C
D
ABCD диагональ 
A
C
AC в два раза больше стороны 
A
B
AB и 

A
C
D
=
112
°
∠ACD=112°. Найди острый угол между диагоналями параллелограмма.

Решение:

Давайте решим задачу шаг за шагом. 1. **Обозначим известные величины**: - Пусть длина стороны \( AB = a \). - Тогда длина диагонали \( AC = 2a \) (по условию задачи). - Угол \( \angle ACD = 112^\circ \). 2. **Найдем угол \( \angle ADB \)**: В параллелограмме сумма углов \( \angle ACD \) и \( \angle ADB \) равна \( 180^\circ \), так как они являются смежными углами. Таким образом: \[ \angle ADB = 180^\circ - \angle ACD = 180^\circ - 112^\circ = 68^\circ. \] 3. **Используем закон косинусов для треугольника \( ACD \)**: В треугольнике \( ACD \) применим закон косинусов:...

Не нашел нужную задачу?

Воспользуйся поиском

Выбери предмет