1. Главная
  2. Библиотека
  3. Программирование
  4. Исполнитель Черепаха действует на плоскости с декартово...
Решение задачи на тему

Исполнитель Черепаха действует на плоскости с декартовой системой координат. В начальный момент Черепаха находится в начале координат, ее голова направлена вдоль положительного направления оси ординат, хвост опущен. При опущенном хвосте Черепаха оставляет

  • Программирование
  • ОсновыАлгоритмизацииИПрограммирования
  • СтруктурыИАлгоритмыОбработкиДанных
Исполнитель Черепаха действует на плоскости с декартовой системой координат. В начальный момент Черепаха находится в начале координат, ее голова направлена вдоль положительного направления оси ординат, хвост опущен. При опущенном хвосте Черепаха оставляет

Условие:

Исполнитель Черепаха действует на плоскости с декартовой системой координат. В начальный момент Черепаха находится в начале координат, ее голова направлена вдоль положительного направления оси ординат, хвост опущен. При опущенном хвосте Черепаха оставляет на поле след в виде линии. В каждый конкретный момент известно положение исполнителя и направление его движения. У исполнителя существует 6 команд: Поднять хвост, означающая переход к перемещению без рисования; Опустить хвост, означающая переход в режим рисования; Вперед п (где п - целое число), вызывающая передвижение Черепахи на п единиц в том направлении, куда указывает ее голова; Назад п (где п - целое число), вызывающая передвижение
в противоположном голове направлении; Направо т (где т - целое число), вызывающая изменение направления движения на т градусов по часовой стрелке. Налево т (где т - целое число), вызывающая изменение направления движения на т градусов против часовой стрелки. Запись Повтори к [Команда1 Команда2 ... Команда S] означает, что последовательность из
S команд повторится к раз.
Черепахе был дан для исполнения следующий алгоритм:
Повтори 4 [Вперед 28 Направо 90 Вперед 26 Направо 90]
Поднять хвост
Вперед 8 Направо 90 Вперед 7 Налево 90
Опустить хвост
Повтори 4 [Вперед 67 Направо 90 Вперед 98 Направо 90]
Определите периметр области пересечения фигур, ограниченных заданными алгоритмом линиям.
В ответ запишите только число.

Решение:

Чтобы решить задачу, давайте разберем алгоритм шаг за шагом и определим, какие фигуры будут нарисованы Черепахой.

1. Первый блок команд:

- Начинаем в (0, 0), направление вверх (0°). - 1-й повтор: - Вперед 28: (0, 28) - Направо 90: теперь направление вправо (90°). - Вперед 26: (28, 28) - Направо 90: теперь направление вниз (180°). - 2-й повтор: - Вперед 28: (28, 0) - Направо 90: теперь направление влево (270°). - Вперед 26: (2, 0) - Направо 90: теперь направление вверх (0°). - 3-й повтор: - Вперед 28: (2, 28) - Направо 90: теперь направление вправо (90°). - Вперед 26: (30, 28) - Направо 90: теперь направление вниз (180°). - 4-й повтор: - Вперед 28: (30, 0) - Направо 90: теперь направление влево (270°). - Вперед 26: (4, 0) - Направо 90: теперь направление вверх (0°). В результате получаем квадрат с вершинами (0, 0), (28, 28), (30, 0), (2, 0). 2. Черепаха не рисует. 3. - Начинаем в (4, 0), направление вверх (0°). - Вперед 8: (4, 8) - Направо 90: теперь направление вправо (90°). - Вперед 7: (11, 8) - Налево 90: теперь направление вверх (0°). В результате получаем линию от (4, 0) до (4, 8) и до (11, 8). 4. Черепаха снова рисует. 5. - Начинаем в (11, 8), направление вверх (0°). - 1-й повтор: - Вперед 67: (11, 75) - Направо 90: теперь направление вправо (90°). - Вперед 98: (109, 75) - Направо 90: теперь направление вниз (180°). - 2-й повтор: - Вперед 67: (109, 8) - Направо 90: теперь направление влево (270°). - Вперед 98: (11, 8) - Направо 90: теперь направление вверх (0°). - 3-й повтор: - Вперед 67: (11, 75) - Направо 90: теперь направление вправо (90°). - Вперед 98: (109, 75) - Направо 90: теперь направление вниз (180°). - 4-й повтор: - Вперед 67: (109, 8) - Направо 90: теперь направление влево (270°). - Вперед 98: (11, 8) - Направо 90: теперь направление вверх (0°). В результате получаем еще один квадрат с вершинами (11, 8), (11, 75), (109, 75), (109, 8). Теперь нам нужно найти периметр области пересечения этих фигур. - Первый квадрат имеет стороны по 28 единиц, периметр = 4 * 28 = 112. - Второй квадрат имеет стороны по 67 единиц, периметр = 4 * 67 = 268. Периметр области пересечения будет равен 112, так как он меньше. Ответ: .
Кэмп Pro AI

Решение от Кэмп Pro AI

Темы и ключевые понятия:

  • Черепаха на плоскости
  • Команды движения вперед
  • Изменение направления направо
  • Опустить хвост рисовать
  • Начало координат ордината

Кол-во просмотров: 100318

Последняя редакция: 31.10.2025

Не нашел нужную задачу?

Воспользуйся поиском

Выбери предмет