Рассчитать прогноз по модели Брауна для следующих данных: | t | Yt | |----|----| | 1 | 115| | 2 | 105| | 3 | 95 | | 4 | 92 | | 5 | 84 | | 6 | 72 | | 7 | 57 | | 8 | 49 | | 9 | 46 | | 10 | 40 | | 11 | 35 | | 12 | 32 |
- Статистика
Условие:
Рассчитать подробно и расписать на моих данных
\begin{tabular}{|c|c|}
\hline \( \mathbf{t} \) & \( \mathbf{Y t} \) \\
\hline 1 & 115 \\
\hline 2 & 105 \\
\hline 3 & 95 \\
\hline 4 & 92 \\
\hline 5 & 84 \\
\hline 6 & 72 \\
\hline 7 & 57 \\
\hline 8 & 49 \\
\hline 9 & 46 \\
\hline 10 & 40 \\
\hline 11 & 35 \\
\hline 12 & 32 \\
\hline
\end{tabular}
Построить прогноз по модели Брауна на 2020 г.
Идея прогнознрования по модели Брауна заключается в том, что прогнозное значенне формнруется на основе предыдущих фактических значений с разными весами. Веса присванваются в зависимости от того, насколько сильным признаётся влияние наблюдения на текущий уровень.
Для быстронзменяюшнхся процессов параметр сглажнвания \( \alpha \) должен быть больше 0,5 , для относительно стабнльных - меньше 0,5 .
Спрогнозировать в Excel данные, соответствующие линейным и экспоненциальным линиям тренда, можно с использованием встроенных статистнческих функций ТЕНДЕНЦИЯ/0 и РОСТ0.
Функция ТЕНДЕНЦИЯ0 возвращает значения в соответствии с линейным трендом. Аппроксимирует прямой линней (по методу наименьших квадратов) массивы известные значения \( y \) и изеестные значения \( x \). Возвращает значення у, в соответствии с этой прямой для заданного массива новые значения \( x \).
Функция POCT0 рассчитывает прогнозируемый экспоненциальный рост на основании имеющихся данных.
Перед вводом формул ТЕНДЕНЦИЯ0 и РОСТ0 необходимо выделить результирующие ячейки, ввести ссылки на известные и новые значения, при необходимости ввести единицу в строку Константа и нажать комбннацню клавиш <Ctrl+Shift+Enter>для ввода данных в массив.
Решение:
Ниже приведён подробный расчёт прогноза на следующий период (год 2020) по модели Брауна (метод двойного экспоненциального сглаживания) на основании исходных данных. Для демонстрации выберем параметр сглаживания α = 0,7 – поскольку ряд быстро убывает, и для быстро изменяющихся процессов рекомендуют α 0,5. Модель Брауна (двойное экспоненциальное сглаживание) предполагает два сглаженных ряда: 1. Первый сглаженный ряд Sₜ^(1): Sₜ^(1) = α·Yₜ + (1 – α)·Sₜ₋₁^(1) 2. Второй сглаженный ряд Sₜ^(2): Sₜ^(2) = α·Sₜ^(1) + (1 – α)·Sₜ₋₁^(2) При этом первые значения принимаются равными первому наблюдени...
Похожие задачи
Не нашел нужную задачу?
Воспользуйся поиском
AI помощники
Выбери предмет
- Правоохранительные органы
- Пожарная безопасность
- Парикмахерское искусство
- Природообустройство и водопользование
- Почвоведение
- Приборостроение и оптотехника
- Промышленный маркетинг и менеджмент
- Производственный маркетинг и менеджмент
- Процессы и аппараты
- Программирование
- Право и юриспруденция
- Психология
- Политология
- Педагогика
- Трудовое право
- Теория государства и права (ТГП)
- Таможенное право
- Теория игр
- Текстильная промышленность
- Теория вероятностей
- Теоретическая механика
- Теория управления
- Технология продовольственных продуктов и товаров
- Технологические машины и оборудование
- Теплоэнергетика и теплотехника
- Туризм
- Товароведение
- Таможенное дело
- Торговое дело
- Теория машин и механизмов
- Транспортные средства