1. Главная
  2. Библиотека
  3. Теоретическая механика
  4. 7. Из старинной пушки, ствол которой установлен под угл...
Решение задачи

7. Из старинной пушки, ствол которой установлен под углом 30° K горизонту, выпущено ядро со скоростью 140 ~m / c. Найти проекции скорости на ось ОХ и ОУ, время падения. Вычислить дальность полета

  • Теоретическая механика

Условие:

7. Из старинной пушки, ствол которой установлен под углом 30° K горизонту, выпущено ядро со скоростью 140 ~m / c. Найти проекции скорости на ось ОХ и ОУ, время падения. Вычислить дальность полета

Решение:

Для решения задачи о движении ядра, выпущенного из пушки, нам нужно определить пр...

Скорость ядра \( v = 140 \, \text{м/с} \) и угол \( \alpha = 30^\circ \). Проекция скорости на ось \( OX \) (горизонтальная): \[ v_x = v \cdot \cos(\alpha) = 140 \cdot \cos(30^\circ) \] Значение \( \cos(30^\circ) = \frac{\sqrt{3}}{2} \approx 0.866 \): \[ v_x = 140 \cdot 0.866 \approx 121.24 \, \text{м/с} \] Проекция скорости на ось \( OY \) (вертикальная): \[ v_y = v \cdot \sin(\alpha) = 140 \cdot \sin(30^\circ) \] Значение \( \sin(30^\circ) = \frac{1}{2} \): \[ v_y = 140 \cdot 0.5 = 70 \, \text{м/с} \] Для определения времени падения, мы используем уравнение движения по вертикали. Время, за которое ядро достигнет земли, можно найти из уравнения: \[ h = v_y \cdot t - \frac{g \cdot t^2}{2} \] где \( h = 0 \) (высота, на которой находится ядро в момент выстрела), \( g \approx 9.81 \, \text{м/с}^2 \) — ускорение свободного падения. Упрощая уравнение, получаем: \[ 0 = 70t - \frac{9.81t^2}{2} \] Факторизуем: \[ t(70 - 4.905t) = 0 \] Отсюда \( t = 0 \) (в момент выстрела) или \( 70 - 4.905t = 0 \): \[ 4.905t = 70 \implies t = \frac{70}{4.905} \approx 14.26 \, \text{с} \] Дальность полета \( R \) можно найти по формуле: \[ R = v_x \cdot t \] Подставляем значения: \[ R = 121.24 \cdot 14.26 \approx 1731.5 \, \text{м} \] 1. Проекции скорости: - \( v_x \approx 121.24 \, \text{м/с} \) - \( v_y = 70 \, \text{м/с} \) 2. Время падения: - \( t \approx 14.26 \, \text{с} \) 3. Дальность полета: - \( R \approx 1731.5 \, \text{м} \)

Не нашел нужную задачу?

Воспользуйся поиском

Выбери предмет