Определите, имеет ли платежная матрица B1 B2 B3 B4 A1 1 2 1 4 A2 4 5 4 3 A3 6 5 2 2 A4 1 2 3 4 а) доминируемые или дублирующие стратегии; б) решение в чистых стратегиях.
«Определите, имеет ли платежная матрица B1 B2 B3 B4 A1 1 2 1 4 A2 4 5 4 3 A3 6 5 2 2 A4 1 2 3 4 а) доминируемые или дублирующие стратегии; б) решение в чистых стратегиях.»
- Теория игр
Условие:
Определите, имеет ли платежная матрица
а) доминируемые или дублирующие стратегии;
б) решение в чистых стратегиях.
Решение:
Анализируем матрицу игры и удаляем стратегии, которые применять игрокам заведомо невыгодно. Этот процесс выполняется на основе применения принципа доминирования.
Просматриваем столбцы матрицы и обнаруживаем, что в матрице отсутствует столбец, каждый элемент которого был бы больше или равен соответствующим элементам какого-либо другого столбца.
Просматриваем строки матрицы и обнаруживаем, что строка A4 матрицы содержит элементы, каждый из которых больше или равен соответствующим элементам строки A1. Доминиру...
Похожие задачи
Не нашел нужную задачу?
Воспользуйся поиском
AI помощники
Выбери предмет
S
А
Б
В
Г
И
К
М
П
- Правоохранительные органы
- Пожарная безопасность
- Парикмахерское искусство
- Природообустройство и водопользование
- Почвоведение
- Приборостроение и оптотехника
- Промышленный маркетинг и менеджмент
- Производственный маркетинг и менеджмент
- Процессы и аппараты
- Программирование
- Право и юриспруденция
- Психология
- Политология
- Педагогика
С
Т
- Трудовое право
- Теория государства и права (ТГП)
- Таможенное право
- Теория игр
- Теория вероятностей
- Теоретическая механика
- Теория управления
- Технология продовольственных продуктов и товаров
- Технологические машины и оборудование
- Теплоэнергетика и теплотехника
- Туризм
- Товароведение
- Таможенное дело
- Торговое дело
- Теория машин и механизмов
- Транспортные средства
Ф
Э