Решение задачи
Куб, все грани которого окрашены, распилен на 1000 кубиков одинакового размера, которые затем перемешаны. Найти вероятность того, что наудачу извлеченный кубик имеет две окрашенные грани.
- Теория вероятностей
Условие:
Куб, все грани которого окрашены, распилен на 1000 кубиков одинакового размера, которые затем перемешаны. Найти вероятность того, что наудачу извлеченный кубик имеет две окрашенные грани (в ответе пишите рациональные числа не используя дроби, то есть 1/4 будет 0,25).
Решение:
Рассмотрим, что исходный куб распилен на 10×10×10 = 1000 кубиков. Кубики с двумя окрашенными гранями находятся по рёбрам, но не в углах. На каждом ребре исходного куба расположено (10 – 2) = 8 таких кубиков (так как два крайних кубика – это угловые, у которых о...
Похожие задачи
Не нашел нужную задачу?
Воспользуйся поиском
Выбери предмет
S
А
Б
В
Г
И
К
М
П
- Правоохранительные органы
- Пожарная безопасность
- Парикмахерское искусство
- Природообустройство и водопользование
- Почвоведение
- Приборостроение и оптотехника
- Промышленный маркетинг и менеджмент
- Производственный маркетинг и менеджмент
- Процессы и аппараты
- Программирование
- Право и юриспруденция
- Психология
- Политология
- Педагогика
Р
С
Т
- Трудовое право
- Теория государства и права (ТГП)
- Таможенное право
- Теория игр
- Текстильная промышленность
- Теория вероятностей
- Теоретическая механика
- Теория управления
- Технология продовольственных продуктов и товаров
- Технологические машины и оборудование
- Теплоэнергетика и теплотехника
- Туризм
- Товароведение
- Таможенное дело
- Торговое дело
- Теория машин и механизмов
- Транспортные средства
Ф
Э