1. Главная
  2. Библиотека
  3. Высшая математика
  4. Ребро BD тетраэдра DABC перпендикулярно плоскости АВС. Отрезки АК и ВР - биссектрисы треугольника АВС. Известно, что угол...

Ребро BD тетраэдра DABC перпендикулярно плоскости АВС. Отрезки АК и ВР - биссектрисы треугольника АВС. Известно, что угол ACB = 90°, AB = 10 см, ВС = 6 см, BD = 3/5 см. Найдите угол между прямыми АК и DP.

«Ребро BD тетраэдра DABC перпендикулярно плоскости АВС. Отрезки АК и ВР - биссектрисы треугольника АВС. Известно, что угол ACB = 90°, AB = 10 см, ВС = 6 см, BD = 3/5 см. Найдите угол между прямыми АК и DP.»
  • Высшая математика

Условие:

Ребро BD тетраэдра DABC перпендикулярно плоскости АВС. Отрезки АК и ВР - биссектрисы треугольника АВС. Известно, что
угол ACB = 90°, AB = 10 см, ВС = 6 см, BD = 3/5 см. Найдите угол между прямыми АК и DP. решить без координат

Решение:

Для решения задачи найдем угол между прямыми АК и DP, используя свойства треугольников и векторов. 1. **Определим треугольник ABC**: - Угол ACB = 90°. - Длина AB = 10 см. - Длина BC = 6 см. - По теореме Пифагора найдем длину AC: \[ AC = \sqrt{AB^2 - BC^2} = \sqrt{10^2 - 6^2} = \sqrt{100 - 36} = \sqrt{64} = 8 \text{ см}. \] 2. **Найдем длины отрезков, на которые делят биссектрисы**: - Биссектрисы делят противоположн...

Не нашел нужную задачу?

Воспользуйся поиском

Выбери предмет