Решить методом разделения переменных задачу для неоднородного уравнения теплопроводности. ut = α2uxx + t, 0 < x < 1, t > 0 ux(0, t) = 2t, u(1, t) = 2t, u(1, t) = 1 u(x, 0) = 1 + 2cos x
«Решить методом разделения переменных задачу для неоднородного уравнения теплопроводности.
ut = α2uxx + t, 0 < x < 1, t > 0
ux(0, t) = 2t, u(1, t) = 2t, u(1, t) = 1
u(x, 0) = 1 + 2cos x»
- Высшая математика
Условие:
Решить методом разделения переменных задачу для неоднородного уравнения теплопроводности.
ut = α2uxx + t, 0 < x < 1, t > 0
ux(0, t) = 2t, u(1, t) = 2t, u(1, t) = 1
u(x, 0) = 1 + 2cos
x
Решение:
Представим решение в виде суммы функций:
, где функция
удовлетворяет граничным условиям. Тогда с учетом:
Похожие задачи
Не нашел нужную задачу?
Воспользуйся поиском
AI помощники
Выбери предмет
S
А
Б
В
Г
И
К
М
П
- Правоохранительные органы
- Пожарная безопасность
- Парикмахерское искусство
- Природообустройство и водопользование
- Почвоведение
- Приборостроение и оптотехника
- Промышленный маркетинг и менеджмент
- Производственный маркетинг и менеджмент
- Процессы и аппараты
- Программирование
- Право и юриспруденция
- Психология
- Политология
- Педагогика
С
Т
- Трудовое право
- Теория государства и права (ТГП)
- Таможенное право
- Теория игр
- Текстильная промышленность
- Теория вероятностей
- Теоретическая механика
- Теория управления
- Технология продовольственных продуктов и товаров
- Технологические машины и оборудование
- Теплоэнергетика и теплотехника
- Туризм
- Товароведение
- Таможенное дело
- Торговое дело
- Теория машин и механизмов
- Транспортные средства
Ф
Э