Решение задачи
Стороны основания правильной усеченой треугольника перамиды равны 2см и 6 см вычеслить обьем перамиды если каждый 2 граный угол при ребра большого основания равен 60°
- Высшая математика
Условие:
Стороны основания правильной усеченой треугольника перамиды равны 2см и 6 см вычеслить обьем перамиды если каждый 2 граный угол при ребра большого основания равен 60°
Решение:
Для нахождения объема правильной усеченной пирамиды, нам нужно знать площадь основания и высоту пирамиды. 1. Площадь оснований: У нас есть два основания: большое и малое. Большое основание — это равносторонний треугольник со стороной 6 см, а малое основание — равносторонний треугольник со стороной 2 см. Площадь равностороннего треугольника вычисляется по формуле: S = (√3 / 4) * a², где a — длина стороны треугольника. Для большого основания: S1 = (√3 / 4)...
Похожие задачи
Не нашел нужную задачу?
Воспользуйся поиском
Выбери предмет
S
А
Б
В
Г
И
К
М
П
- Правоохранительные органы
- Пожарная безопасность
- Парикмахерское искусство
- Природообустройство и водопользование
- Почвоведение
- Приборостроение и оптотехника
- Промышленный маркетинг и менеджмент
- Производственный маркетинг и менеджмент
- Процессы и аппараты
- Программирование
- Право и юриспруденция
- Психология
- Политология
- Педагогика
Р
С
Т
- Трудовое право
- Теория государства и права (ТГП)
- Таможенное право
- Теория игр
- Текстильная промышленность
- Теория вероятностей
- Теоретическая механика
- Теория управления
- Технология продовольственных продуктов и товаров
- Технологические машины и оборудование
- Теплоэнергетика и теплотехника
- Туризм
- Товароведение
- Таможенное дело
- Торговое дело
- Теория машин и механизмов
- Транспортные средства
Ф
Э