Задачу нелинейного программирования привести к стандартному виду. Изобразить допустимое множество и линии уровня целевой функции; решить задачу графически. Проверить, выполняются ли условия теоремы Вейерштрасса о существовании решения.
- Высшая математика
Условие:
Задачу нелинейного программирования

привести к стандартному виду. Изобразить допустимое множество и линии уровня целевой функции; решить задачу графически. Проверить, выполняются ли условия теоремы Вейерштрасса о существовании решения. На рисунке проверить выполнение условий Куна-Таккера в угловых точках допустимого множества (т.е. в точках, в которых число активных ограничений не меньше числа переменных) и в точках касания линии уровня целевой функции с границами допустимой области. Найти точки, в которых условия Куна-Таккера выполняются, и определить, какие из ограничений являются активными в таких точках. Выписать условия Куна-Таккера в найденных точках и рассчитать значения двойственных переменных. Сделать обоснованный вывод о наличии или отсутствии локального (глобального) максимума во всех рассмотренных точках.
Решение:
Приведем задачу к стандартному виду.


Изобразим допустимое множество (заштриховано) и линии уровня целевой функции.
Похожие задачи
Не нашел нужную задачу?
Воспользуйся поиском
Выбери предмет
- Правоохранительные органы
- Пожарная безопасность
- Парикмахерское искусство
- Природообустройство и водопользование
- Почвоведение
- Приборостроение и оптотехника
- Промышленный маркетинг и менеджмент
- Производственный маркетинг и менеджмент
- Процессы и аппараты
- Программирование
- Право и юриспруденция
- Психология
- Политология
- Педагогика
- Трудовое право
- Теория государства и права (ТГП)
- Таможенное право
- Теория игр
- Текстильная промышленность
- Теория вероятностей
- Теоретическая механика
- Теория управления
- Технология продовольственных продуктов и товаров
- Технологические машины и оборудование
- Теплоэнергетика и теплотехника
- Туризм
- Товароведение
- Таможенное дело
- Торговое дело
- Теория машин и механизмов
- Транспортные средства