1. Главная
  2. Библиотека
  3. Эконометрика
  4. Максимизировать Z = 6x₁ + 4x₂ при ограничениях: 4x₁ + 3x₂ ≤ 12 4x₁ + x₂ ≥ 8 4x₁ - x₂ ≤ 8 x₁, x₂ ≥ 0

Максимизировать Z = 6x₁ + 4x₂ при ограничениях: 4x₁ + 3x₂ ≤ 12 4x₁ + x₂ ≥ 8 4x₁ - x₂ ≤ 8 x₁, x₂ ≥ 0

«Максимизировать Z = 6x₁ + 4x₂ при ограничениях: 4x₁ + 3x₂ ≤ 12 4x₁ + x₂ ≥ 8 4x₁ - x₂ ≤ 8 x₁, x₂ ≥ 0»
  • Эконометрика

Условие:

\( \begin{array}{l}1.14 \max \quad Z=6 x_{1}+4 x_{2} \text { и } \\ \left\{\begin{array}{l}4 x_{1}+3 x_{2} \leq 12 \\ 4 x_{1}+x_{2} \geq 8 \\ 4 x_{1}-x_{2} \leq 8 \\ x_{1}, x_{2} \geq 0\end{array}\right.\end{array} \)

Решение:

The provided mathematical formulation represents a linear programming problem aimed at maximizing the objective function \( Z = 6x_1 + 4x_2 \) under a set of constraints. ### Objective Function: - The goal is to maximize \( Z \), which is a linear combination of the variables \( x_1 \) and \( x_2 \). The coefficients indicate the contribution of each variable to the objective function, with \( x_1 \) having a higher weight (6) compared to \( x_2 \) (4). ### Constraints: The problem is subject to the following constraints: 1. **Constraint 1:** \( 4x_1 + 3x_2 \leq 12 \) ...

Не нашел нужную задачу?

Воспользуйся поиском

Выбери предмет