В прямом параллелепипеде стороны оснований равны 10см и 12см и образуют угол 30°. Найти объем параллелипипеда, если лощадь его боковой поверхности равнп 220 см2
- Геометрия
Условие:
В прямом параллелепипеде стороны оснований равны 10см и 12см и образуют угол 30°. Найти объем параллелипипеда, если лощадь его боковой поверхности равнп 220 см2
Решение:
Чтобы найти объем прямого параллелепипеда, нам нужно знать его высоту. Мы можем использовать данные о боковой поверхности и о сторонах основания для нахождения высоты. 1. Определим площадь основания: Основание параллелепипеда имеет форму трапеции, так как стороны равны 10 см и 12 см и образуют угол 30°. Площадь трапеции можно найти по формуле: \[ S = \frac{(a + b) \cdot h}{2} \] где \(a\) и \(b\) — это длины оснований, а \(h\) — высота трапеции. Для нахождения высоты трапеции \(h\) можно использовать угол 30°. Высота \(h\) будет равна: \[ h = a \cdot \sin(30°) = 10 \c...
Похожие задачи
Не нашел нужную задачу?
Воспользуйся поиском
Выбери предмет
- Правоохранительные органы
- Пожарная безопасность
- Парикмахерское искусство
- Природообустройство и водопользование
- Почвоведение
- Приборостроение и оптотехника
- Промышленный маркетинг и менеджмент
- Производственный маркетинг и менеджмент
- Процессы и аппараты
- Программирование
- Право и юриспруденция
- Психология
- Политология
- Педагогика
- Трудовое право
- Теория государства и права (ТГП)
- Таможенное право
- Теория игр
- Текстильная промышленность
- Теория вероятностей
- Теоретическая механика
- Теория управления
- Технология продовольственных продуктов и товаров
- Технологические машины и оборудование
- Теплоэнергетика и теплотехника
- Туризм
- Товароведение
- Таможенное дело
- Торговое дело
- Теория машин и механизмов
- Транспортные средства