Однородная круглая платформа массой M и радиусом R может вращаться без трения вокруг неподвижной вертикальной оси O, перпендикулярной к её плоскости. По окружности платформы может двигаться материальная точка B массой m.
- Механика
Условие:
Однородная круглая платформа массой M и радиусом R может вращаться без трения вокруг неподвижной вертикальной оси O, перпендикулярной к её плоскости. По окружности платформы может двигаться материальная точка B массой m. В начальный момент система неподвижна, затем точка B начинает двигаться относительно платформы по закону s=R(1-coskt) [м], где k=const, t – время (положительное направление дуг – против часовой стрелки). Определить закон вращения платформы.
Дано: M, R, m, s=R(1-coskt), м, k=const.
Найти: φ=φ(t).
Решение:
Рассмотрим механическую систему, состоящую из платформы и груза В. Для определения применим теорему об изменении кинетического момента системы относительно оси z:
(1)При движении точки в одну сторону, платформа будет вращаться в противоположном направлении.
Похожие задачи
Не нашел нужную задачу?
Воспользуйся поиском
AI помощники
Выбери предмет
- Правоохранительные органы
- Пожарная безопасность
- Парикмахерское искусство
- Природообустройство и водопользование
- Почвоведение
- Приборостроение и оптотехника
- Промышленный маркетинг и менеджмент
- Производственный маркетинг и менеджмент
- Процессы и аппараты
- Программирование
- Право и юриспруденция
- Психология
- Политология
- Педагогика
- Трудовое право
- Теория государства и права (ТГП)
- Таможенное право
- Теория игр
- Теория вероятностей
- Теоретическая механика
- Теория управления
- Технология продовольственных продуктов и товаров
- Технологические машины и оборудование
- Теплоэнергетика и теплотехника
- Туризм
- Товароведение
- Таможенное дело
- Торговое дело
- Теория машин и механизмов
- Транспортные средства