Условие:
Задана функция распределения случайной величины Х:

Необходимо найти плотность вероятности, математическое ожидание и дисперсию данной случайной величины. Также требуется определить вероятность попадания в отрезок [0,25; 1].
Решение:
Плотность вероятности равна производной от функции распределения. Вычисляя производную, находим:

Математическое ожидание непрерывной случайной величины равно

В поставленной задаче интегрируется кусочно-...
